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Abstract. Exact and approximate nonlinear self-localized modes are shown to exist in a one-
dimensional chain of interacting Frenkel excitons due to exciton–exciton static attraction. Two
different modes are found and their frequencies are below the exciton frequency band. These
results suggest a possible new mechanism for localization of the energy of the amide–I excitons
through the exciton–exciton interaction in protein molecules.

Stationary intrinsic self-localized modes have been found to exist in pure nonlinear
discrete systems. They appear in pure anharmonic lattices [1-4] and Heisenberg
antiferromagnets [5, 6]. Recently Zhu and Kobayashi showed that intrinsic self-localized
Frenkel excitons can exist in a linear chain of interacting Frenkel excitons [7]. This
system has many applications. With the exception of J-aggregates [8], this system also
describes the well known quantum spin system, theXXY model, in an external magnetic
field. Furthermore, it also exactly describes the system of the amide–I vibrations in protein
molecules [9]. Thus, a further investigation of this system is necessary. In [7], approximate
nonlinear self-localized modes were found numerically. In the present paper, we will show
analytically that this system has two kinds of new nonlinear self-localized modes.

Following [7], we consider a system of one-dimensional molecular chain composed of
N two-level molecules, in which a Frenkel exciton accompanied by a static dipole moment
µ can propagate to a neighbouring molecule with a transfer matrix element−J . The
Hamiltonian describing this system is

H = h̄ω0

∑
j

sz
j − 1

2
J

∑
j,δ

(s+
j s−

j+δ + s−
j s+

j+δ) − Jz

∑
j,δ

(sz
j + 1

2)(sz
j+δ + 1

2) (1)

where the operatorss+
j = sx

j + isy

j ands−
j = sx

j − isy

j indicate excitation and de-excitation,
respectively, between two levels with an excitation energy ¯hω0 at thej th site,δ runs over
the nearest neighbours ofj , and

[sz
i , s

±
j ] = ±s±

i δij [s+
i , s−

j ] = 2sz
i δij . (2)

In (1), the first term corresponds to the energy of the non-interacting molecules, the second
term describes propagation of the excitation associated with the transfer matrix element−J
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and the last term comes from electrostatic interaction between two Frenkel excitons and the
interaction energy is−Jz.

As a spin Hamiltonian, equation (1) describes the well known quantum spin system,
the XXY model, in an external magnetic field ¯hω0. Here we represent the spin operators
by means of the Bose operatorsa and a+ according to Dyson–Maleev transformation as
follows:

s+
j = a+

j (1 − a+
j aj ) (3)

s−
j = aj (4)

sz
j = a+

j aj − 1
2 . (5)

The Bose operatorsa anda+ satisfy the following commutation relations:

[aj , a
+
j ] = δij [ai, aj ] = [a+

i , a+
j ] = 0 . (6)

Substituting equations (3)–(5) in (1), we obtain

H = −1

2
Nh̄ω0 + h̄ω0
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j
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j aj − 1

2
J
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j aj+δ + aja
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+
j+δaj+δ

+1
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j+δa

+
j+δajaj+δ) (7)

whereN is the number of molecules in the chain. In (7), the first three terms are simply the
exciton Hamiltonian in Davydov’s model [10], which do not include the nonlinear terms
and so cannot have self-localized modes. The Heisenberg equation of motion for the system
described by (7) is

ih̄ȧj = h̄ω0aj − J
∑

δ

aj+δ − 2Jz

∑
δ

a+
j+δaj+δaj + 2J

∑
δ

a+
j ajaj+δ (8)

where the dot denotes the derivative with respect to time.
We are concerned with soliton-like intrinsic nonlinear mode in the system induced

by exciton–exciton interactions, for which many excitons are presumed to participate. A
physically acceptable candidate for quantum states of such a particle-like entity may be
coherent state. Therefore, we use Glauber’s coherent states [12]:

|{αj }〉 =
∏
j

|αj 〉

as the ansatz for the eigenstates ofH . The coherent states satisfy the following equation:

aj |αj 〉 = αj |αj 〉 (9)

whereαj is a complex eigenvalue. In the coherent state representation, equation (8) becomes

ih̄α̇j = h̄ω0αj − J (αj+1 + αj−1) − 2Jz(|αj+1|2 + |αj−1|2)αj + 2J |αj |2(αj+1 + αj−1) .

(10)

In this paper, we will consider the stationary localized-mode solution to (10), so we set

αj = ξj e−iωt (11)

whereξj andω are time-independent and real; equation (10) thus becomes

ωdξj = −(1 − 2ξ2
j )(ξj+1 + ξj−1) − 2γ ξj (ξ

2
j+1 + ξ2

j−1) (12)
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where

ωd = (ω − ω0)/J γ = Jz/J .

When γ = 0, equation (12) is the well known stationary discrete nonlinear Schrodinger
equation and it has kink solutions. We will show that equation (12) has both bright soliton
and kink solutions.

(i) Bright soliton solution. It appears difficult to find exact analytical bright soliton solutions
to (12). However, fairly good approximate analytical lattice-soliton solutions do exist,
provided that

ξj (ξ
2
j+1 + ξ2

j−1) = Bξ2
j (ξj+1 + ξj−1) (13)

whereB is a constant. The condition under which equation (13) holds and the constantB

will be determined later. Then equation (12) can be rewritten as

ωdξj = −[1 + 2(γB − 1)ξ2
j ](ξj+1 + ξj−1) . (14)

Equation (14) is the stationary discrete nonlinear Schrodinger equation. It can be shown [10]
that (14) has the following soliton solution ifγB > 1:

ξj = [1/
√

2(γB − 1)] sinh(K) sech[K(j − j0)] (15)

with

ωd = −2 coshK) (16)

whereK andj0 are constants. To ensure that (13) holds for the above solution, we find by
substituting (15) in (13) thatB is approximately a constant and that

B ≈ 1/ cosh(K)

whenK � 1. ThusγB > 1 requires

1 < cosh(K) < γ . (17)

Furthermore, in order to take into account the finite-ladder structure of the spin
operators [5, 11], the amplitudeA of αj must satisfy

A2 = sinh2(K)/[2(γB − 1)] = coshK) sinh2(K)/[2(γ − coshK))] < 1 . (18)

This equation gives

cosh(K) = (2/3)
1
3 (1 − A′)/f (A′) + f (A′)/18

1
3 (19)

whereA′ = 2A2 and

f (A′) = [9γA′ +
√

3(−4 + 12A′ − 12A′2 + 4A′3 + 27γ 2A′2)
1
2 ]

1
3 . (20)

Equations (17), (19) determine the possible range of the value ofK whenA is given.
In order for the stationary mode given by (15) to be stable, its frequency must be above

(below) the top (bottom) of the exciton frequency band

ω(k) = ω0 − 2J cos(k) (21)

where k is a wavevector of the exciton. It is easy to show that only the latter case is
possible. From (16) we have

ω = ωm + 2J [1 − cosh(K)] (22)

whereωm = ω0 − 2J is the bottom of the exciton frequency band. It is clear thatω is
always smaller thanωm sinceK is not equal to zero.
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For a given value ofγ , the frequency, amplitude and profile of the self-localized mode
described by (11) with (15), (16) are determined byK, while K is determined by (17), (18).
For example, takingA2 = 1

2, from (19) we obtain

cosh(K) = γ
1
3 . (23)

This also satisfies (17). Thus the frequency of the mode described by (11) is proportional
to γ 1/3. Therefore this mode is different from that obtained in [7], where the frequency of
the mode is proportional toγ whenA2 = 1

2.

(ii) Kink soliton solution. It is easy to prove that equation (12) also has the following kink
solution:

ξj = ±A tanh[K(j − j0)] (24)

with tanh(K) = 1 and

ωd = −2γA2 . (25)

This is an interesting kink-like solution. From (25) the frequency of this localized mode is

ω = ωm + 2J (1 − γA2) . (26)

This shows thatω is below the bottom of the exciton frequency band whenγA2 > 1. The
kink solution given by (24) is a population inversion state with all molecules being in the
excitation state except one, since the probability of thej th molecule being in the excitation
state is proportional toξ2

j . Thus, it is similar to a stationary dark soliton.

In conclusion, we have found two kinds of analytical nonlinear self-localized modes
in one-dimensional molecular chain of interacting Frenkel excitons. Recently Agranovich
and IIinski [13] have shown that strong static dipole–dipole repulsion of one-dimensional
and two-dimensional charge-transfer excitons can induce, at sufficiently high exciton
concentrations, an electron dielectric–metal phase transition. Mysyrowiczet al theoretically
pointed out that the superfluid excitons can propagate as a bright soliton under the condition
of their Bose condensation and successfully observed this effect in Cu2O [14, 15]. We hope
that our results will help in providing a better understanding of the nonlinear effects of
excitons in low-dimensional molecular systems. Since the system handled in this paper can
also be taken as a model for the system of the amide–I vibrations in protein molecules, our
results suggest a possible new mechanism of the localization of the energy of the amide–I
excitons through the exciton–exciton interaction.
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